Thermal Conductivity of La_2CuO_4 , La_2NiO_4 , and Nd_2CuO_4 in the Semiconducting and Metallic Phases

C. G. S. Pillai¹ and A. M. George¹

Received June 28, 1985

Thermal conductivity of polycrystalline La_2CuO_4 , La_2NiO_4 , and Nd_2CuO_4 was measured in the temperature range 300–1000 K. No anomaly in thermal conductivity has been observed during the semiconductor-to-metal transition of La_2NiO_4 or in the metallic phases of La_2CuO_4 and La_2NiO_4 . A change of slope has been found, however, in the thermal conductivity of La_2CuO_4 at the crystallographic transition. The thermal conductivity of the oxides is mainly phononic in this temperature range.

KEY WORDS: electrical conductivity; La_2CuO_4 ; La_2NiO_4 ; Nd_2CuO_4 ; oxides; phonons; thermal conductivity; thermal expansion.

1. INTRODUCTION

In recent years, materials showing transition from semiconductor to metal, or vice versa, have received considerable attention. These materials, while passing through the transition, exhibit changes in their crystal structure, electrical transport, and magnetic properties, which are well studied [1]. However, adequate attention has not been given to their thermal transport properties. A few references [2–4] appearing in the literature are ambiguous in as much as their nature and mode of heat conduction during or after the transition. For example, the thermal conductivity of vanadium oxide reported by Bergland and Guggenheim [2] did not show any change during the phase transition; the conductivity was found to be temperature independent. However, the measurement by Andreev et al. [3] on VO₂, V_2O_3 , and V_3O_5 revealed a drop in their conductivity at the transition, which thereafter resembled that observed for amorphous materials.

Rare earth oxides of the general formula Ln_2XO_4 (Ln = La, Nd and

¹ Chemistry Division, Bhabha Atomic Research Centre, Bombay-400085, India.

X = Cu, Ni) have been studied extensively with respect to their electrical transport properties [5-7]. magnetic properties [8-10]. and crystallographic transitions [11, 12]. Because of the complexity in the structural arrangement of atoms, these oxides exhibit varied behavior in their properties [13]. Thus $La_2 CuO_4$ is metallic even at room temperature. $La_2 NiO_4$ shows a semiconductor \rightleftharpoons metal transition at about 600 K, semiconducting. and Nd_2CuO_4 is An orthorhombic-to-tetragonal crystallographic transition is reported for La₂CuO₄ at about 533 K [11]. However, their thermal transport properties have not been studied so far. The aim of the present work is to investigate the nature of their thermal conductivity in the semiconducting and metallic phases and also during the phase transitions. In order to determine the contributions of the different factors to the total thermal conductivity, their electrical conductivity, linear thermal expansion, and specific heat variations have been measured in the same temperature interval.

2. EXPERIMENTAL

The compounds were prepared by solid-state reactions of the respective oxides. Powders of the component oxides of a putity greater than 99.9% were mixed thoroughly and heated initially in a platinum crucible in air at 1250 K for a period of 10 h. The product was ground and reheated till the compounds were formed, which were characterized by X-ray diffraction using CuK_a radiation.

Sintered samples were prepared for the measurements by uniaxial cold compaction of the oxides followed by sintering at 1400 K in air for 48 h. For all measurements, two pellets were prepared from two different lots. The density of the samples varied between 70 and 80% of the theoretical. All the measurements were carried out in air from 300 to 1000 K.

The thermal conductivity was measured on pellets 2.5 cm in diameter and 2-3 cm in height by the comparative method, described elsewhere [14]. Pyroceram-9606 and Inconel-718 were used as standards. The accuracy of the measurements was better than $\pm 5\%$.

The thermal expansion was measured on samples 1.25 cm in diameter and 1.00 cm in thickness using quartz push-rod dilatometer (Model LKB-3185) with a calibrated dial gauge. The accuracy of the dial gauge was $\pm 0.5 \,\mu$ m.

Measurement of the electrical conductivity of the samples was carried out by a four-probe DC cell [15].

DSC measurements were made on La_2CuO_4 and La_2NiO_4 between 300 and 750 K, with a differential scanning calorimeter (Perkin-Elmer DSC-1B).

3. RESULTS AND DISCUSSION

Figure 1 shows the variation of the measured thermal conductivity of La_2CuO_4 , La_2NiO_4 , and Nd_2CuO_4 with the inverse of temperature, corrected for zero porosity using the equation of Franel and Kingery [16]. Typical data obtained on two samples for each oxide are presented in Tables I, II, and III. It is found that the thermal conductivity of the oxides decreases with an increase in temperature.

The results of the electrical conductivity measurements are shown in Fig. 2, which are in good agreement with those reported in the literature [5-7]. The plots clearly show the metallic nature of La₂CuO₄, the semiconducting behavior of Nd₂CuO₄, and the semiconductor-to-metal

Fig. 1. Thermal conductivity of La_2CuO_4 , La_2NiO_4 , and Nd_2CuO_4 , corrected for porosity, as a function of inverse temperature.

transition of La₂NiO₄. The data are employed for calculation of the electronic contribution to the thermal conductivity (λ_e) .

The percentages linear thermal expansion of the oxides as a function of temperature are shown in Fig. 3. A change of slope is observed at about 530 K in the case of La_2CuO_4 , while the DSC measurements did not

		Standard used											
	<u> </u>	Inconel-718	Pyroceram-9606										
Sample	Temp. (K)	$\frac{\lambda}{(\mathbf{W}\cdot\mathbf{m}^{-1}\cdot\mathbf{K}^{-1})}$	Temp. (K)	$(\mathbf{W} \cdot \mathbf{m}^{-1} \cdot \mathbf{K}^{-1})$									
I	360	5.29	330	5.39									
(74% theoretical density)	370	5.25	350	5.32									
(400	5.18	375	5.25									
	440	5.17	430	5.14									
	465	5.14	510	5.07									
			590	4.82									
	510	5.14	620	4.81									
	520	4.98	690	4.66									
	530	4.96	735	4.63									
	575	4.88	790	4.50									
	615	4.76	845	4.45									
	665	4.75	915	4.37									
	695	4.70											
	740	4.66											
	795	4.55											
	820	4.52											
	865	4.44											
	960	4.36											
	1000	4.33											
II	335	5.05	395	5.00									
(70% theoretical density)	365	5.00	630	4.50									
	425	4.92	735	4.45									
	485	4.98	855	4.20									
	500	4.90	895	4.20									
	560	4.69											
	580	4.67											
	675	4.50											
	780	4.28											
	790	4.37											
	870	4.13											

Table I. Measured Values of Thermal Conductivity of La2CuO4

Thermal Conductivity of Oxides

indicate any noticable change in the specific heat of the samples in the temperature interval of measurements.

The thermal conductivity of semiconductors represents the cumulative transport of heat by phonons (λ_p) and by electrons and holes (λ_e) . Quantitative expressions for estimating the phononic contribution of thermal

	Standard used											
		Inconel-718	P	yroceram-9606								
	Temp. (K)	$ \begin{array}{c} \lambda \\ (\mathbf{W} \cdot \mathbf{m}^{-1} \cdot \mathbf{K}^{-1}) \end{array} $	Temp. (K)	$(\mathbf{W} \cdot \mathbf{m}^{-1} \cdot \mathbf{K}^{-1})$								
I	325	5.96	335	5.88								
(79% theoretical density)	360	5.70	395	5.56								
	420	5.46	435	5.37								
	480	5.17	505	5.10								
	500	5.06	510	5.13								
	530	5.02	530	4,98								
	560	4.96	580	4.88								
	605	4.86	605	4.82								
	645	4.82	625	4.76								
	685	4.69	660	4.75								
	720	4.66	675	4.70								
	740	4.68	705	4.69								
	765	4.62	745	4.57								
	800	4.54	790	5.53								
	835	4.50	865	4.47								
	865	4.46	895	4.47								
	915	4.42										
	1005	4.35										
II	345	5.11	355	5.09								
(70% theoretical density)	375	4.90	405	4.91								
	505	4.48	455	4.73								
	620	4.34	505	4.57								
	720	4.22	550	4.41								
	815	3.99	600	4.34								
	850	4.05	675	4.33								
			710	4.21								
			750	4.13								
			795	4.10								
			850	4.05								
			895	3.99								

Table II. Measured Values of Thermal Conductivity of La2NiO4

conductivity (λ_p) have been proposed by various investigators [17–19]. Even though these expressions are essentially equivalent in nature, the computed numerical values differ considerably [19, 20]. Hence instead of calculating λ_p numerically, its relation with temperature was evaluated using the expression given by Dugdale and McDonald [18]:

$$\lambda_{\rm p} = \frac{1}{3} \frac{cva}{\alpha r T} \tag{1}$$

	Standard used												
		Inconel-718	Py	vroceram-9606									
	Temp. (K)	$(\mathbf{W} \cdot \mathbf{m}^{-1} \cdot \mathbf{K}^{-1})$	Temp. (K)	$(\mathbf{W} \cdot \mathbf{m}^{-1} \cdot \mathbf{K}^{-1})$									
I	345	5.88	345	6.00									
(80% theoretical density)	380	5.79	385	5.67									
· · · · · · · · · · · · · · · · · · ·	425	5.48	390	5.78									
	465	5.26	405	5.60									
	510	5.15	480	5.33									
	530	5.04	490	5.16									
	565	4.95	500	5.26									
	625	4.82	530	5.00									
	675	4.73	575	4.97									
	725	4.58											
	765	4.52											
	815	4.41											
	875	4.32											
	925	4.20											
	965	4.20											
	1000	4.16											
II	320	5.88	345	5.53									
(75% theoretical density)	370	5.47	405	5.26									
	405	5.25	430	5.10									
	465	5.03	505	4.83									
	525	4.73	535	4.73									
	555	4.65	580	4.64									
	610	4.58	635	4.43									
	675	4.43	685	4.35									
	720	4.31	730	4.28									
	780	4.20	780	4.20									
	835	4.13	815	4.13									
	910	3.98	860	4.04									
			900	3.98									

Table III. Measured Values of Thermal Conductivity of Nd₂CuO₄

Fig. 2. Electrical conductivity (σ) of La₂CuO₄ (×), La₂NiO₄(\bullet), and Nd₂CuO₄ (\bigcirc) versus inverse temperature.

where c is the lattice specific heat per unit volume, v is the velocity of sound in the medium, a is the lattice constant, r is the Grüneisen constant, and α is the linear thermal expansion coefficient. From the above expression, it can be noted that unless any or all the terms involved in the equation show an abrupt change with temperature other than the usual monotonic variations, λ_p will be inversely dependent on T.

Prior investigations [11, 12] have shown that there is no major change in the lattice constants of these oxides with temperature, even in the case of La_2CuO_4 during the crystallographic transition. As described previously, DSC did not show any change in the specific heat of the samples. In the case of thermal expansion, the plot showed a change of slope for La_2CuO_4 , corresponding to its crystallographic transition, and no such change was observed for the other oxides. The velocity of sound in the oxides and their Grüneisen constants have been assumed to be constant [21]. Thus, in these oxides the various terms in Eq. (1) are not

Fig. 3. Percentage expansion of La_2CuO_4 (\bigcirc), La_2NiO_4 (\bigcirc), and Nd_2CuO_4 (\times) as a function of temperature.

significantly affected by temperature. Under these conditions λ_p exhibits an inverse relation with temperature. The plots of the measured thermal conductivity with the inverse of temperature (Fig. 1) are linear in all cases, thereby showing that the thermal conductivity of the oxides is predominantly phononic.

The electronic part of the thermal conductivity (λ_e), calculated using the Wiedmann-Franz equation [22], and the measured electrical conductivity are given in Table IV. λ_e is observed to be negligible compared to the total thermal conductivity. Unlike in the case of the metallic phases of vanadium oxides, the conductiviries of La₂CuO₄ and La₂NiO₄ are inversely dependent on temperature in the metallic phases; there is no evidence to suggest that any other conduction mechanism is operative in this range. The changes in the slope of the plot of λ verses 1/T above and below the crystallographic transition in La₂CuO₄ are a direct result of the corresponding dependence of the linear thermal expansion on temperature.

ತೆ
Conductivity
Thermal
of Electronic
Values
Calculated
and
б
Conductivity (
Electrical
of
Values
Measured
Σ
e l
Tab

CuO4	$\lambda_e \times 10^3$ (W · m ⁻¹ · K ⁻¹)	0.001	0.003	0.007	0.015	0.025	0.045	0.076	0.117	0.170	0.238	0.324	0.425	0.569	0.760	1.057	1.438	1.915	2.477	3.224	4.208	5.466	7.426	10.095	13.698	18.655	26.049	34.843	46.564	60.945
Nd	$\sigma \ (\Omega^{-1} \cdot {\mathfrak m}^{-1})$	0.170	0.347	0.761	1.677	2.565	4.307	6.865	10.015	13.877	18.473	24.041	30.193	38.685	49.628	66.370	86.957	111.645	139.373	175.438	221.631	278.862	367.377	484.731	638.978	846.024	1149.425	1497.006	1949.318	2487.562
NiO ₄	$\frac{\lambda_{\rm e} \times 10^2}{(\rm W \cdot m^{-1} \cdot \rm K^{-1})}$	0.625	0.806	0.988	1.193	1.382	1.642	1.924	2.286	2.716	3.634	4.882	6.072	6.774	7.292	7.693	7.990	8.245	8.458	8.668	8.750	8.909	9.024	9.094	9.240	9.188	9.428	9.487	9.593	9.387
La ₂	$\sigma imes 10^{-2}$ $(\Omega^{-1} \cdot \mathrm{m}^{-1})$	8.503	10.122	11.521	12.987	14.104	15.773	17.452	19.646	22.173	28.249	36.232	43.103	46.083	47.619	48.309	48.309	48.077	47.619	47.170	46.083	45.455	44.643	43.668	43.103	41.667	41.600	40.761	40.161	38.314
CuO ₄	$\lambda_e \times 10^2$ (W · m ⁻¹ · K ⁻¹)	0.933	1.139	1.339	1.454	1.563	1.640	1.707	1.785	1.842	1.881	1.922	1.970	2.050	2.092	2.179	2.278	2.372	2.545	2.629	2.732	2.804	2.883	2.967	3.045	3.119	3.183	3.250	3.295	3.365
La ₂	$\sigma \times 10^{-2}$ $(\Omega^{-1} \cdot \mathbf{m}^{-1})$	12.690	14.306	15.601	15.823	15.949	15.748	15.480	15.337	15.038	14.620	14.265	13.986	13.947	13.661	13.680	13.774 .	13.831	14.327	14.306	14.389	14.306	14.265	14.245	14.205	14.144	14.045	13.967	13.793	13.736
	Temp. (K)	300	325	350	375	400	425	450	475	500	525	550	575	600	625	650	675	700	725	750	775	800	825	850	875	906	925	950	975	1000

.

Thermal Conductivity of Oxides

1099

4. CONCLUSIONS

The thermal conductivities of La_2CuO_4 , La_2NiO_4 , and Nd_2CuO_4 are identical and comparable in magnitude even though they exhibit diverse electrical transport properties. Phonons are found to be the predominant carriers of heat, and the heat conduction is not affected by the semiconductor-metal transition in La_2NiO_4 . The crystallographic transition in La_2CuO_4 is clearly reflected in its thermal conductivity.

ACKNOWLEDGMENT

One of the authors (CCSP) is greatly thankful to Dr. R. P. Agarwala, Head, Material Science Section, for his valuable advice and discussions.

REFERENCES

- 1. D. Adler, Rev. Mod. Phys. 40:714 (1968).
- 2. C. N. Bergland and H. J. Guggenheim, Phys. Rev. 185:1022 (1969).
- 3. V. N. Andreev, F. A. Chudnoskii, A. V. Petrov, and E. I. Terukov, *Phys. Stat. Sol. (a)* **48**:K153 (1978).
- 4. M. B. Salamon, J. W. Bray, G. De Pasquali, and R. A. Craven, *Phys. Rev. B* 11:619 (1975).
- 5. M. Foex, Bull. Soc. Chim. France 109 (1961).
- 6. P. Ganguly and C. N. R. Rao, Mat. Res. Bull. 8:405 (1973).
- 7. A. M. George, I. K. Gopalakrishnan, and M. D. Karkhanavala, *Mat. Res. Bull.* 9:721 (1973).
- 8. R. Saez Puche, M. Norton, and W. S. Glaunsinger, Mat. Res. Bull. 17:1429 (1982).
- 9. R. Saez Puche, M. Norton, and W. S. Glaunsingar, Mat. Res. Buil. 17:1523 (1982).
- 10. G. A. Smolenskii, V. N. Yudin, and E. Sher, Sov. Phys. Solid State 4:2452 (1963).
- 11. J. M. Longo and P. M. Raccah, J. Solid State Chem. 6:526 (1973).
- 12. J. B. Goodenough and S. Ramasesha, Mat. Res. Bull. 17:383 (1982).
- 13. J. B. Goodenough, Mat. Res. Bull. 8:423 (1973).
- 14. C. G. S. Pillai and A. M. Gearge, Report BARC-1122 (1981).
- 15. A. M. George and I. K. Gopalakrishnan, J. Phys. E. Sci. Instr. 8:13 (1975).
- 16. J. Franel and W. D. Kingery, J. Am. Ceram. Soc. 37:99 (1954).
- 17. G. Leibfried and E. Schlomann, Nachr. Ges. Wiss. Goett. Math. Phys. K1.2(4):71 (1954).
- 18. J. S. Dugdale and D. K. C. Mac Donald, Phys. Rev. 98:1751 (1955).
- 19. M. Roufosse and P. G. Klemens, Phys. Rev. B 7:5379 (1973).
- J. E. Parrott and A. D. Stuckes, *Thermal Conductivity of Solids* (Pion, London, 1975), pp. 114-115.
- 21. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1966), pp. 183-187.
- 22. P. E. D. Morgan, J. Am. Ceram. Soc. 58:349 (1975).